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drous ether was then added over a 5-min period with stir­
ring. The solution was maintained at -70° for 30 min and 
was poured into saturated ammonium chloride solution. 
The aqueous layer was separated and extracted with fresh 
ether. The organic phases were combined, dried over mag­
nesium sulfate, and stripped at reduced pressure to a crys­
talline solid, 1.80 g. This material was purified by sublima­
tion (60°, 1 mm) to yield 1.55 g (91%) of 4-ter/-butyl-l-
methylcyclohexanol, mp 62-65° (lit.19 70.5-71° for the 
pure axial alcohol). 

In conclusion, MeLi-Me2CuLi is a highly effective re­
agent for the equatorial methylation of unhindered, confor-
mationally biased cyclohexanones. Further work will in­
clude studies of this reagent with other substrates and the 
stereochemical behavior of a variety of mixed cuprates and 
other transition metal ate complexes. 
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Benzamide Oxygen Exchange Concurrent with 
Acid Hydrolysis 

Sir: 

Although it is generally accepted that bimolecular acid-
catalyzed amide hydrolysis proceeds via a tetrahedral addi­
tion intermediate probably formed from the O-protonated 
amide,1 a number of workers recently have found it difficult 
to rule out the alternate route in which water directly dis­
places an amine molecule from the N-protonated amide.2 

At the basis of this controversy is the fact that, to date, the 
occurrence of carbonyl oxygen exchange concurrent with 
the hydrolysis has not been demonstrated.2a-b-3 Such ex­
change is observed during base hydrolysis,3'4 as well as with 
carboxylate esters in both acid and base solutions,la-5 and is 
usually taken to imply the presence of tetrahedral inter­
mediates.13 We report here that accompanying the acid-
catalyzed hydrolysis of benzamide there is a small, but de­
tectable, amount of exchange. 

This study was carried out using a sample of the amide 
enriched with ca. 90% 18O.6 This was hydrolyzed in 5.9% 
H2SO4 at 85°, and the unreacted amide was recovered7 at 
various times and subjected to direct mass spectrometric 
analysis (Table I). A small, but definite, increase with time 
is seen in the ratio of the intensities of the peaks at m/e 121 
and 123 (molecular ions), indicative of exchange of the 
benzamide oxygen with solvent oxygen. Conversion8 of 
these ratios to per cent 18O shows that there is a decrease of 
about 0.2% 18O for each half-life of hydrolysis. From the 
data can be calculated a rate of exchange of 1.28 X 1O-5 

min-1, V32O the rate of hydrolysis. In control experiments (i) 
the analysis procedure was shown to be capable of repro­
ducing the small differences in 18O content very accurately 
(Table II), and (ii) it was demonstrated that the observed 
decrease in 18O content on hydrolysis cannot have arisen ei­
ther through the work-up procedure or because of revers­
ibility of the hydrolysis reaction.9 

The very small amount of exchange found here shows 
why this was not detected in previous investigations, where 
a much smaller 18O enrichment was used. For example, in 
that study with the greatest enrichment (3%),2a our result 
shows that there was a decrease in 18O content of only 
0.02% (over three half-lives of hydrolysis), not outside the 
limit of experimental error. Interestingly Bender and Ging­
er,30 on the basis of the error in their data, placed a lower 
limit on /CH/&E of 374 (for benzamide under slightly differ­
ent acidic conditions). 

The observation here of the exchange process establishes 
that a tetrahedral intermediate is formed during the acid-
catalyzed hydrolysis of benzamide. Although this species is 
not necessarily on the hydrolysis pathway, it is difficult to 
imagine that this is not the case. In particular the small 
amount of return to amide relative to break-up to products 
(a factor of 160 assuming rapid proton transfer) is precisely 
what is expected for sucfi a tetrahedral intermediate formed 
under acid conditions.1 In such solutions it will exist pre-
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Table I. Oxygen Exchange during Benzamide Hydrolysis 
in 5.9% H2SO4 at 85.0° 

Run 1 Run 2 

121/123^ 

0.1005 
0.1030 
0.1049 
0.1071 

% 18Oc 

90.87 
90.66 
90.51 
90.33 

Time, 
min0 

0 
150 
312 
478 

121/123* 

0.1013 
0.1033 
0.1057 
0.1082 

% 18O^ 

90.80 
90.64 
90.44 
90.24 

fcEd= 1.25 X 1O-5 min-1 /fcEd = 1.30 X lO^min"1 

a For hydrolysis, fcH = 4.09 X 10 "3 min"1, Iy1 = 169 min (C. R. 
Smith and K. Yates,/. Am. Chem. Soc, 93, 6578 (1971). b Ratio 
of peak intensities at m/e 121 and 123, measured on an AEI MS-902, 
equipped with a Vacuumetrics ratiometer. These values are the 
average of 30—40 determinations; standard deviations range from 
0.00025 to 0.00035. c (IJr)I(I + (1/V)),S r = 121/123.<* Slope of the 
plot of In (% 18O - 0.2) vs. time. 

Table II. Control Experiment Demonstrating Reproducibility 
of Mass Spectral Analysis 

% labeled 
benzamide0 

100 
99.86 
99.73 
99.45 

121/123* 

0.1010 
0.1030 
0.1041 
0.1069 

% l s Oc 

90.83 
90.66 
90.57 
90.34 

% labeled 
benzamide, calcd 

(100) 
99.81 
99.71 
99.46 

a Samples of 18O enriched benzamide diluted with small amounts 
of unlabeled material. *.cSee footnotes b and c in Table I. 

dominantly in an N-protonated form, so that the best leav­
ing group will be amine and not water. In addition an anal­
ogy exists with the hydrolysis of imidate esters where a sim­
ilar tetrahedral intermediate is formed and also decomposes 
in acid mainly by expulsion of amine.10 

In conclusion the results obtained here provide compel­
ling evidence for the intermediacy of tetrahedral species in 
the acid-catalyzed hydrolysis of benzamide, and there ap­
pears to be no reason to assign this reaction to a mechanis­
tic category different from that of other hydrolysis reac­
tions of carboxylic acid derivatives. 
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The Pyridine Route to Optically Active Estrone 
and 19-Norsteroids 

Sir: 

The use of the bis annelating agent 1 has been previously 
described.1 '3 System 2 may be elaborated after reaction of 
1 with a nucleophilic equivalent of R. Such systems are con-
vertable by reductive hydrolytic cyclization into cyclohexe-
nones such as 3. Alternatively, compound 4 may be em­
ployed as a tris annelating agent.4a For instance, reaction of 
4 with 55a under acidic catalysis gives racemic hydrinden-
edione (6a). Of course, the use of 6a in a total synthesis of 
estrone would require recourse to resolution if optically ac­
tive product is to be produced.5b 

Alternatively compound 74a can be produced in high 
yield4b from the reaction of 4 and 5 in ethyl acetate contain­
ing triethylamine. The prochiral nature of 7 lends itself to 
the possibility of asymmetrically induced aldolization under 
the influence of L-amino acids. This highly original concept 
had been demonstrated and used with great success by Ha-
jo s 6 a b and Eder7 in the synthesis of the parent hydrinden-
edione 9 (R = H) from the oxobutyl system 8 (R = H). In 
pursuing this approach, we were not unmindful of previous 
reports,7 which indicated a sharp deterioration of asymmet­
ric specificity in the transformation of 8 — 9, as R becomes 
alkyl. 

We report the total synthesis of optically active estrone 
and the commercially important 19-norsteroids involving, 
as a key step, the conversion of prochiral 7—* optically ac­
tive 6 with high asymmetric specificity via an aromatic 
amino acid. 

The sign and value of [a] D for the pure 13S antipode, 6b, 
were obtained as follows. Reduction of the pure 13S enan-
tiomer, 9,6,7 with sodium borohydride gave 10. The latter 
was converted to 11 [a] D +94.6° (benzene, c 1%) accord­
ing to Hajos.8 Picolyethylation of 11 (1 equiv of enone 1; 1 
equiv of potassium tert-amyl oxide-ferr-amyl alcohol; 2 
equiv of 1; reflux 12 hr) followed by cleavage of the tert-
butyl ether (HCl -E tOH-H 2 O; reflux 45 min) gave 12b 
[a] D +28.4° (benzene, c 1%), in 36% yield. Jones oxidation 
of 12b gave optically pure 6b [a]D +202.0° (benzene, c 
1%). 

Attempted cyclization of 7 under the influence of L-pro-
line using the conditions of either Hajos6 or Eder7 gave dis­
appointing results in terms of optical specificity. Fortunate­
ly, it was found that reaction of 7 with L-phenylalanine 
under conditions similar to those of Eder7 (1 equiv of trione; 
1.2 equiv of amino acid; 0.5 equiv of HClOa in acetonitrile 
2.7 ml/mmol of trione; reflux 40 hr) gave 6c [a]D +173.6° 
(i.e., 86% optical purity) in 82% chemical yield from 4.9 We 
now describe the conversion of 6c into estrone and 19-nor-
steroids. Separations of the c series (86% optically pure) 
into the optically pure (b compounds) and largely racemic 
(a compounds) was achieved with nearly perfect efficiency 
in one recrystallization at the tetracyclic stages (vide infra). 
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